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A genera[  scheme is proposed for  the solution of t rans ient  hea t - t r ans f e r  problems relat ing to 
the cutting (machining) of mate r ia l s ,  due allowance being made for  the interact ions  between the 
cut ter ,  the work-p iece ,  and the shavings. 

Hardly any considerat ion has ye t  been given in the l i te ra ture  to the t ransient  hea t - t r ans fe r  p rocesses  
associated with the cutting of mate r ia l s  making due allowance for  the mutual influence of all the part icipat ing 
components.  Only s teady-s ta te  heat t r ans fe r  was considered in the best  known monograph on the subject [1]. 

We shall he re  consider  hea t - t r an s f e r  problems associated with cutting on the basis  of a three-body sy s -  
tem: cut ter ,  work-p iece ,  and shavings. The indices 1, 2, and 3 will be used to identify the thermophysica[  
and geomet r ica l  coeff icients  of these consti tuents.  Several  contact  sur faces  si,  i = 1, 2, 3, small  by compa r i -  
son with the dimensions of the actual bodies,  take part  in the thermal  interaction.  Fr ic t ion  r e l eases  a cer ta in  
amount of heat Q(t) in the overal l  contact  region s; we denote the Proport ions absorbed by each body as Qi(t) = 
siqi(t), where qi(t) = (1/s i )Qi( t )  a re  the average thermal  fluxes through the contact  a reas  si. Within the limits 
of  each contact  area  (by virtue of its small  dimensions) we neglect  the nonuniformity of the the rmal  flux, i .e . ,  
we envisage uniformly distr ibuted heat sources  with an intensity qi(t). 

Let us cons ider  that on the contact a reas  the following heat-balance equation is satisfied: 

3 

Q(t) = ~ siqi(t ). (1) 
i=[  

The t empera tu re  at the tip of the cu t te r  T(t) is common to all the bodies taking par t  in the cutting, and 
we call  this the contact  cutting tempera ture .  

In the t rans ient  mode the contact  t empera tu re  for  each body may be expressed  in the f o r m  of the thermal  
potential  of a simple layer  [2], 

t 

T (t) ----- .f qi (to) Ji ( t - -  t0) dto; i = 1, 2, 3. : (2) 
0 

Here  the express ions  di(t - t  0) sat isfy the equation of heat conduction and cer ta in  initial and boundary conditions. 
Applying a Laplace t ransformat ion [2-3] to Eqs. (1) and (2) 

r (P) ~- ( exp (-- pt) f (t) dt 
0 

and using the convolution theorem,  we obtain 

q (p) = ~ q~ (p) st; T (p) = 7~ (p) qt (P). 
i ~ l  

Hero qi(P) a re  complex the rma l  fluxes and ~,1 (P) a r e  complex the rma l  potentials ,  i = 1, 2, 3. 
sys tem (3) in image space becomes 

3 

si l Qi(P) = T(p) si 
V(p) = q (p) - = ~i (p) v~ ~) 

The solution of the 

(3) 

(4) 
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The complex  t h e r m a l  poten t ia l s  yi(p) depend on the ve loc i ty  of the heat  s o u r c e s ,  the g e o m e t r y  of the bodies  and 
con tac t  r eg ions ,  and o ther  f ac to r s .  In o r d e r  to obtain the solut ion in the or ig ina l  v a r i a b l e s  we have to take the 
r e su l t an t  equat ions  (4) and apply the R i e m a n n - M e l l i n  inve r s ion  f o r m u l a  [2-3] 

1 j. 
f (t) = 2hi f (p) ep~ dr. 

(Y--i 

The spec ia l  impor t ance  of an opera t iona l  solut ion of this kind ties in the poss ib i l i ty  of de r iv ing  a va r i e ty  of 
a sympto t i c  e x p r e s s i o n s .  F r o m  the ge ne ra l  solut ion (4) it is easy  to obtain the s t e a d y - s t a t e  solut ion if the total  
quant i ty  of heat  evolved in unit t ime is cons tan t  Q(t) = Q; Q(p) = Q / p .  Acco rd ing  to the we l t -known l imit ing 
re la t ionsh ip  T (:r = lira pT (p) we obtain 

p - - 0  
3 

7 i ( 0 )  ; Q i ( ~ 1 7 6 1 7 6 1 7 6  ? i ( 0 )  

Here  )i(0) wil l  be the rea l  t h e r m a l  potent ia ls .  In o r d e r  to ca lcu la te  the complex  t h e r m a l  potent ia ls  we use the 
method of heat  s o u r c e s .  

It is wel l  known that  [2] in the h a l f - s p a c e  z _> 0 an ins tan taneous  heat  sou rce  of s t r eng th  q* applied to the 
point  (x0, Y0, 0) will ,  a f t e r  the e lapse  of t ime t - t 0, induce the fol lowing t e m p e r a t u r e  at the point  (x, y ,  z):  

q* (t0) 0) exp . (6) 
0 (t) = 4~k (~r a/2 (t - -  to) 40) (t - -  to) 

Let  a se t  of cont inuous ly  ac t ing heat  s o u r c e s  q(t0) , un i formly  d is t r ibu ted  over  an a r e a  s of the boundary  of the 
h a l f - s p a c e ,  move at  a cons tan t  ve loci ty  v p a r a l l e l  to  the ox axis .  In tegra t ing  Eq. (6) with r e s p e c t  to t ime t o 
and over  the a r e a  s in the mobi le  coord ina te  s y s t e m ,  we obtain 

t 

0 ( 0 = 0 )  ~ S  q(t~ [ P' 
4~, (~-0))a:'2 ds~ (t --  to) a/~ exp 40) (t - -  to) ~'0) ( t--  to) - -  r162 (x - -  Xo) ] dt o. (7) 

s 0 

Applying a Laplace  t r a n s f o r m a t i o n  and the convolut ion t h e o r e m ,  we have 

O(p) = q(P) exp -- cr (x -- xo) -- p -6 cr 1 dso. (8) 
2~% P 

s 

Let us ca lcu la te  the complex  t h e r m a l  poten t ia l s  fo r  the case  in which the heat  s o u r c e s  a re  d i s t r ibu ted  
over  a c i r c l e  or  s t r ip .  

If the heat  s o u r c e s  a re  d i s t r ibu ted  ove r  a c i r c l e  of rad ius  R,  and if in Eq. (8) we in tegra te  with r e s p e c t  
to q~0 in the c o o r d i n a t e s  (r, ~p, z),  at  the c e n t e r  of the c i r c l e  z = r = 0 we sha l l  have 

R 

1 fl~176 l--r~ V p J 0 (p) = q(p) ?h (P); Ya(P) ---- --~ . ~ - -  + a 2 dro. (9) 
0 

Using the Laplace  method [4] with due a l lowance  fo r  the we l l -known expans ion  of the function I0(x) in power  
s e r i e s ,  we may de r ive  an a sympto t i c  s e r i e s  f o r  large  p ( t p r -  ~ ;  R e p  > 0), 

1 .(2n)! a 2n P +a~ - '2 (10) 
"~ (P) = ~ ~=o (n!)~ 2 ~  0) 

The s t e a d y - s t a t e  t e m p e r a t u r e  for  the case  of cons tant  intensi ty  q(t) = q is given by the equat ion 

R 

1 ~ Io (aro) exp (-- rdz ) dro- o ( ~ )  = qw(O); ~ ( o )  = - - ~  

o 

(11) 

With due a l lowance fo r  the p r o p e r t i e s  of B e s s e l  f u n c t i o n s t h e  la t ter  i n t eg ra l  may  be e x p r e s s e d  in t e r m s  of the 
tabulated funct ions 

?k (0) = exp (-- coP) [I 0 (aR) + 11 (aR)]. (12) 
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If the heat  sources  are  distr ibuted over  a band or s t r ip  Ix01 _< a,  by integrating Eq. (8) in Car tes ian  co -  
ordinates  with r e spec t  to Y0 we obtain the following at  points on the ox axis (y = 0): 

x + a  

O(p)= q(p)kn iexp(--au) K~ du" (13, 
x - - a  

In p a r t i c u l a r ,  in the cen te r  of the s t r ip  

0 (p) = q (p) ?st(P); 2 ich(~zu) Ko(uVZ  p ' ?STOP) - -  n~, - - ~ -  -I- ~z ~) du. (14) 
0 

In the p resen t  case  it is more  complicated to obtain an asymptot ic  expansion than to calculate the asymptotic  
se r i e s  (10). 

1Remembering that the main contribution to the integral  comes f rom the point u = 0, and discussing the 
situation as in the Laplace method, only replacing the exponential  by the function K0(x), we obtain an asymptot ic  
se r i e s  fo r  large p ( I p l - * ~ ,  tRep > 0) 

�9 r 

?st(P) = , ~ =~ . (2n)!! r - 
(15) 

We note that fo r  large p the f i r s t  t e rms  of the asymptot ic  se r i e s  (10) and (15) coincide: 

[ / p -I -I 
Y s t ( P ) = Y k ( P ) =  k 1/ - '  o + as  " 

The  s t e a d y - s t a t e  t e m p e r a t u r e  f o r  the c a s e  q(t) = q is  w r i t t e n  thus :  

( 1 6 )  

2 ~ ch (au) K o (cttt) du. (17) O(zc)=q?st(O); ?st(O)= ~,  
0 

Using a method analogous to that used in deriving Eq. (12), we obtain an express ion  for  the integral  in t e rms  of 
known functions 

7st(0) = ~-2a [ch (an) K0 (cza) + sh (aa) K, (~a)]. (18) 

According to the genera l  scheme we express  the complex contact t empera tu re  T(p) for  each body in t e rms  
of the complex the rma l  fluxes qi(P). 

In re la t ion to the cu t te r ,  which is regarded as an octant (one eight of space),  the heat sources  are  s t a -  
t ionary and a re  distr ibuted over  its f ront  and back faces  in the form of qua r t e r s  of c i r c l e s  with radii  r f  = 
2 ~  r b = ~7"~ ' -~and  a total  a rea  of Sl = bl. A tlowing for  the superposi t ion principle  and using Eq, (9) 
with c~ = 0, we obtain the complex t empera tu re  at the tip of the cu t t e r  in the form 

T (p) = q~ (p) "f~ (p), (3.9) 

" - -  ~ - - '  _ r f +  rb 
, 1 / r  r [ 2 - - exp  ( - -  r f  l / /  + )  - -  exp ( - - r  b j / ~ T - ~  ) J "  ?~(0)-  -- (20, 

r ~ ( P ) =  k v - p - - -  , ' k~ 

We regard  the work-p iece  as a hal f -space;  a long its sur face ,  t ravel ing at a velocity v 2 = V, a re  heat sources  
dis tr ibuted in the fo rm of rec tangles  Ixol _< a2; fYol -< b / 2  with a reas  s 2 = bl2; l 2 = l b + ld; a2 = 12/2. In o rder  
to de te rmine  the t empera tu re  we supplement the heat sources  so as to fo rm a str ip - ~  < Y0 < ~, the cha r -  
ac te r i s t i c  dimension in the d i rec t ion of motion of the sources  being prese rved .  

We take the chip or shaving as a half-plate  of width b; over  its end sur face ,  t raveling at a velocity v3 = 
v / k ,  a re  heat sources  distr ibuted over  the range Ix0t < lb/2 =a 3 with a reas  s 3 = b/b; 13 = lb + ld. On the fo re -  
going assumptions ,  the contact  t empera tu re  of the work-piece  and shaving (the t empera tu re  in the center  of 
the source  distribution) is de termined by Eq. (14), and may be wri t ten  as follows: 

- + T (p) = ?i (P) qi (P); 7i (P) n k  i 

0 
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"?i (0) = 2ai [ch (aia) Ko (a~a) + sh (a~a) K1 (aial)]; 

U i ~ =  - - ;  i = 2 ,  3. 
2(o i 

(22) 

Substituting the resu l tan t  values  of the complex  t h e r m a l  potent ia ls  (21) and (20) into (4), we obtain a solution 
to the p rob lem in image space.  Equations (5), with due allowance for  the values of the t he rma l  potentials  ~t 
p = 0, taken together  with (22) and (20), give the s t eady- s t a t e  contact  t e m p e r a t u r e  and the stable t he rma l  fluxes. 

Let us study the resu l tan t  solution a f t e r  long and shor t  per iods  of t ime t for  the case  in which the total  
amount  of heat  l iberated in the cutting zone p e r  unit t ime constant:  Q(t) = Q; Q(p) = Q / p .  F o r  large values of 
p, on allowing for  the asympto t ic  equation (16), we obtain 

3 
Q e~,is~ P + a~ �9 (23) 

r (p)--- P i=, o,-~--. 

H e r e  for  convenience of wri t ing we have taken a l  = 
s e r i e s  in powers  of 1/~;p and confining attention to 

T=--O-- 

3 

where  M = ' ~  
i=1 

we obtain expansions for  the t he rma l  f luxes 

Qk~s~e~ { 1 ( a ~ _  - 

T r a n s f o r m i n g  to the or iginal  va r i ab les ,  we shall  have 

T (t) -- ~QM V-E 1/-7- ( l-- 

Q, (t) = M |,/-~-~ 1-t- - - ~  

0; ~i = 2; e 2 = e 3 = 1. Expanding the la t ter  express ion  in 
two of the t e r m s  we obtain 

I N 1 .~ (24) 
m 1/-p-- 2M 2 p ] ' 

3 
e i X i s i ( 1 / ~  is the total  conductivity of the sys tem;  N = %z~ 2 ~iXisia i4~t .  In an analogous way 

i~ l  

N )} i = 1 ,  2, 3. (25) 
M ' 

N t) , 
3M 

M ' i= I ,  2, 3. (26) 

It follows f r o m  the la t ter  equations that at the initial  instant the t he rma l  fluxes a re  d is t r ibuted in the ra t io  

Q1 : O.2 : Q3 2~,81 ~s2 Z3s~ 
| ' f ~ l  l"r(e~ l ' r e ) ~  - 

Let us study the solution for  smal l  p (large t), basing oar considerations on the theorem a rb i t r a r i l y  known 
as "the rule of f rac t ional  indices" [3]. 

If the image f(p) may be expanded in the neighborhood of the point P0 in the power s e r i e s  

f(p) = ~ ,  c,~(p--po)~',~; )~o~2}.1< . . .  --~.oo, (27) 
n~O 

the asympto t ic  expansion of the original  will ,  as  t - -  ~,  f o r m  a s e r i e s  

f(t) ---. ep,t Zn=o F (-~,n)ca t-xn-I " (28) 

He re  we m u s t  put [r(-~n)] -1 = 0 when Xn takes a posi t ive who le -number  value. 

We may exp re s s  the contact  t e m p e r a t u r e  (4) in the neighborhood of ze ro  [withdue allowance f o r E q s ,  (20) 
and (21)] in the fo rm of a s e r i e s  

1 
T (p) -- P Z c,pnl% (29) 

n~O 

In o rder  to de te rmine  the f i r s t  two coeff ic ients  of this s e r i e s  we may cons ider  the following expres s ions :  
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c 0 = lim [pT(p)]; c 1 = lira {2 |/p-[pT(p)]'}. (30) 
p~0 p~0 

The coeff icient  co, equal to the steady contact  t e m p e r a t u r e ,  was  calculated e a r l i e r  in Eq. (5). 

F o r  the second coeff icient  cl ,  a f t e r  executing the limiting t rans i t ion we have 

cl =: 2Q ]/~-1 ' A = - (rf q- rb/s 

According to Eq. (28) we may wri te  the contact  t e m p e r a t u r e  as follows, confining attention to only two t e r m s  in 
the se r i e s :  

T (t) = T (oo) [1-- 2 V~-~it~lslA Q T(oo)] . 

On the bas i s  of this last  equation we may conclude that, as  the t h e r m a l  conductivity of the cu t t e r  and the con -  
tact  a rea  a re  reduced,  the s tabi l izat ion t ime of the p roce s s  d iminishes .  

The resu l tan t  solutions may find appl icat ions  in other p r o c e s s e s  as  well  as  cutting. Thus,  by putting 
~'3 = 0 we obtain a solution to the p rob lem of t rans ien t  heat  t r a n s f e r  between two bodies.  Heat  t r a n s f e r  in a 
s y s t e m  of two bodies a r i s e s  in finishing and s t rengthening p r o c e s s e s ,  in p rob l ems  re la t ing  to fr ic t ion between 
two bodies,  and so forth.  

N O T A T I O N  

w, ~, t h e r m a l  conductivity and t he rm a l  diffusivity;  v, velocity of heat  sources  (cutting speed);  li(x), Ki(x), 
modified Bes se l  functions of the f i r s t  and second kinds; b, width of cut; If, I b, lengths of contacts  along the 
front  and back  faces  of the tool; I d, length of deformat ion  a r e a ,  l = If + I b; k, shr inkage coeff icient  of shaving; p2 -- ( x -  
x0) 2 + ( y - y 0 )  2 + z2; c~ = v/2o: .  

io 
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