STUDY OF TRANSIENT HEAT TRANSFER IN THE
CUTTING OF MATERIALS

V. M. Khorol'skii UDC 536.241:621.91

A general scheme is proposed for the solution of transient heat-transfer problems relating to
the cutting (machining) of materials, due allowance being made for the interactions between the
cutter, the work-piece, and the shavings.

Hardly any consideration has yet been given in the literature to the transient heat~transfer processes
associated with the cutting of materials making due allowance for the mutual influence of all the participating
components. Only steady-state heat transfer was considered in the best known monograph on the subject [1].

We shall here consider heat-transfer problems associated with cutting on the basis of a three-body sys-~
tem: cutter, work-piece, and shavings. The indices 1, 2, and 3 will be used to identify the thermophysical
and geometrical coefficients of these constituents. Several contact surfaces si, i =1, 2, 3, small by compari-
son with the dimensions of the actual bodies, take part in the thermal interaction. Friction releases a certain
amount of heat Q) in the overall contact region s; we denote the proportions absorbed by each body as Q) =
8{9j {t), where q;{t) = (1 /s{)Qj(t) are the average thermal fluxes through the contact areas si. Within the limits

" of each contact area (by virtue of its small dimensions) we neglect the nonuniformity of the thermal flux, i.e.,
we envisage uniformly distributed heat sources with an intensity qj ).

Let us consider that on the contact areas the following heat-balance equation is satisfied:
3
Q=Y s4.0). @
i=l

The temperature at the tip of the cutter T (t) is common to all the bodies taking part in the cutting, and
we call this the contact cutting temperature,

In the transient mode the contact temperature for each body may be expressed in the form of the thermal
potential of a simple layer [2],

) t
T = { gl Jilt—1t) dty i=1,2, 3. ' @)

0

Here the expressions Jj({t —t,) satisfy the equation of heat conduction and certain initial and boundary conditions.
Applying a Laplace transformation [2-3] to Eqs. (1) and @)

Fioy = [ eo(—pfrdt
1]

and using the convolution theorem, we obtain

a0 = 3 at)si TE=10) 6. | ®
i=1

Here qi(p) are complex thermal fluxes and v; (p) are complex thermal potentials,i=1, 2, 3. The solutionof the
system (3) in image space becomes

s S;
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The complex thermal potentials v; (o) depend on the velocity of the heat sources, the geometry of the bodies and
contact regions, and other factors. In order to obtain the solution in the original variables we have to take the
resultant equations (4) and apply the Riemann —Mellin inversion formula [2-3]

1 0+[oa
f) = —— j F(p) entdt.
2ni
O~—{
The special importance of an operational solution of this kind lies in the possibility of deriving a variety of
asymptotic expressions. From the general solution (4) it is easy to obtain the steady-state solution if the total

quantity of heat evolved in unit time is constant Q) = Q; Q@) = Q /p. According to the well-known limiting
relationship T (=) = lim 8’1‘ (p) we obtain
p —

3

=0 | N — 17 — T (oo : )
Tt )'Q[[}g 7:(0) ] P (=T ,(0>

Here 4;(0) will be the real thermal potentials. In order to calculate the complex thermal potentials we use the
method of heat sources.

It is well known that [2] in the half-space z = 0 an instantaneous heat source of strength g* applied to the
point (xy, vy, 0) will, after the elapse of time t —t,, induce the following temperature at the point x,y, z):

_ g* (f) © I 6
() 4 () ? (1 —t,) EXP[ 4w(t~to)]' o

Let a set of continuously acting heat sources q(ty), uniformly distributed over an area s of the boundary of the
half-space, move at a constant velocity v parallel to the ox axis. Integrating Eq. (6) with respect to time t,
and over the area s in the mobile coordinate system, we obtain

t
— q( o) ____;]2_)2__—__ T AN
() \”‘ t)3/,, exp [ ol —1) oo (¢t to)‘ o(x xO)J dt,. )

Applying a Laplace transformation and the convolution theorem, we have

o= L2 ﬁeXp[—a(x—xo)—p ]

Let us calculate the complex thermal potentials for the case in which the heat sources are distributed
over a circle or strip.

ds,. (8)

If the heat sources are distributed over a circle of radius R, and if in Eq. (8) we integrate with respect
to @ in the coordinates (r, ¢, z), at the center of the circle z = r = 0 we shall have

R
8(p) = q(p) vx (p); Yu(p) = ——i—~ f I, (aero) exp [—ro I/—Z— +a2J dr,. ©)

Using the Laplace method [4] with due allowance for the well-known expansion of the function I;(x) in power
series, we may derive an asymptotic series for large p (ip! — =; Rep > 0),

had . 2nd-1
vilg) = L NY _@te [ p o a\T T
V2 (P) @ o7 ( o a) 10)

The steady-state temperature for the case of constant intensity qt) = q is given by the equation
) R
8(c0) = qvs (0 1 (0) = —— j L; (o) exp (— ro@) dr. 11y
0

With due allowance for the properties of Bessel functions the latter integral may be expressed in terms of the
tabulated functions

Ve (0) = exp (_ a‘R) [IO (a‘R) + Il (QR)] (12)
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If the heat sources are distributed over a band or strip Ix,l <a, by integrating Eq. (8) in Cartesian co~
ordinates with respect to y, we obtain the following at points on the ox axis (y = 0):

x+ta
8(p) = q(p) J exp(—au) K, (1ul l/ ” +a2) : (13)
In particular, in the center of the strip
2 T
00) = 7(6) Pl Tlp) = —— j ch (o) K, (u l/ P o) du (14)
. 0

In the present case it is more complicated to obtain an asymptotic expansion than to calculate the asymptotic
series (10).

Remembering that the main contribution to the integral comes from the point u = 0, and discussing the
situation as in the Laplace method, only replacmg the exponential by the function K;(x), we obtain an asymptotic
series for large p (Ipl —~=, Rep > 0)

2n4-1

. an@—1 [ p N~
TalP) = w E @n)'! ( © *“2) ' 9

We note that for large p the first terms of the asymptotic series (10) and (15) coincide:

'Vst(p) =Y (P) = [7\4 l//-—f)— + c(,z}—l. (16)

The steady-state temperature for the case q(t) = q is written thus:

a

8(00) = 7, (0 7,(0) = {r j ch (oat) K, (at) . )
0

Using a method analogous to that used in deriving Eq. (12), we obtain an expression for the integral in terms of
known functions

70 = 22 [ch (o) K, @a) + $h 0a) K, (@)l as;

According to the general scheme we express the complex contact temperature T (p) for each body in terms
of the complex thermal fluxes q;{).

In relation to the cutter, which is regarded as an octant (one eight of space), the heat sources are sta-
tionary and are distributed over its front and back faces in the form of quarters of circles with radii r; =
2Vbl; / m rp = Vblp /7 and a total area of s; = bl. Allowing for the superposition principle and using Eq. (9)
with o = 0, we obtain the complex temperature at the tip of the cutter in the form

T (p) = q:(p) v, (P), 19)

o ' 1 /f o, ,"P__p ~) _ /__p ‘) ) 0) — .r_,fT 'y 20)
Yl(p)—T‘ l/ '—p— 2—exp —ff]// ©, / exp t — bl o, » Yl() ;‘11 (
We regard the work-piece as a half-space; along its surface, traveling at a velocity v, = v, are heat sources
distributed in the form of rectangles x| = ay; lyol = b /2 with areas sy = bly; Iy = Iy + I4; ay = Iy /2. In order
to determine the temperature we supplement the heat sources so as to form a strip —= < y4 < <, the char-
acteristic dimension in the direction of motion of the sources being preserved.

We take the chip or shaving as a half-plate of width b; over its end surface, traveling at a velocity vg =
v/k, are heat sources distributed over the range ix,| < I}, /2 = a; with areas s; = blp; I3 = Ip + I3. On the fore-
going assumptions, the contact temperature of the work-piece and shaving (the temperature in the center of
the source distribution) is determined by Eq. (14), and may be written as follows:
« . . S _
2 .
Tpy=vP a@s vlp)= —— ‘S K, (u ]/ £ +af~) ch (au) du, 1)
‘ 0
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¥;(0) = —‘—2‘; [ch(a;a) K, (2;0) -+ sh(x;a) K, (a,a));
Tt s
' (22)

_Substituting the resultant values of the complex thermal potentials (21) and (20) into (4), we obtain a solution
to the problem in image space. Equations (5), with due allowance for the values of the thermal potentials at
p = 0, taken together with (22) and (20), give the steady-state contact temperature and the stable thermal fluxes.

Let us study the resultant solution after long and short periods of time t for the case in which the total
amount of heat liberated in the cutting zone per unit time constant: Q(t) = Q; Q@) = Q/p. For large values of
p, on allowing for the asymptotic equation (16), we obtain

3 —
T(p)= “;2—‘ {2 g;hS; V/—(gl-— +oc%j 1~ (23)

i=l

Here for convenience of writing we have taken ay = 0; &; = 2; &5 = €5 = 1. Expanding the latter expression in
series in powers of 1 /Vp and confining attention to two of the terms we obtain

T:Q{ 1___N 1}' (24)
p MVp 2M* p ‘

3 3
where M = 2 ggAisi (@ /Vwi) is the total conductivity of the system; N = 2 Si)\iSi&%\/E;. In an analogous way

i=1 i=l

we obtain expansions for the thermal fluxes

QA;s:8; 1 ( 9 N )} . '
: = 1 —_— - Wi > L= 1) 27 3' (25)
Q: (p) oMV o, { + op \%o T

Transforming to the original variables, we shall have

T = _RVE (1— il t),

MV= M
Q= ;lﬁ;wg {1+ ; (agwi_%» i—1, 9, 3. (26)

It follows from the latter equations that at the initial instant the thermal fluxes are distributed in the ratio
Q:0Q,:0Q; = 27»1_5i Lo heSy L RSy

e
Vo, Vo, Vo,

Let us study the solution for small p (large t), basing our considerations on the theorem arbitrarily known
as "the rule of fractional indices™ [3].

If the image f(p) may be expanded in the neighborhood of the point p, in the power series

Fo =" calo—p)'™ dy<H< ... >oo, @7

n=0

the asymptotic expansion of the original will, as t — =, form a series

fo=e Y ‘rT;CT)‘ e (28)
n=0 n

Here we must put [I‘(—kn)]‘1 = 0 when \p takes a positive whole-number value.
We may express the contact temperature (4) in the neighborhood of zero [with due allowance for Egs, (20)
and (21)] in the form of a series
1 5 ,
TE = — Y cr 29)
P n=0

In order to determine the first two coefficients of this series we may consider the following expressions:
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¢ = lim [pT(p); ¢y =lim {21/ pT (p)'}. (30)

The coefficient ¢, equal to the steady contact temperature, was calculated earlier in Eq. (5).
For the second coefficient ¢y, after executing the limiting transition we have

AsicZ A ] ’f‘; -+ rf

QVo; T (e

According to Eq. (28) we may write the contact temperature as follows, confining attention to only two terms in
the series:

€y ==

- __hsd
T(t) =T (o) [1 T T(oo)].

On the basis of this last equation we may conclude that, as the thermal conductivity of the cutter and the con-
tact area are reduced, the stabilization time of the process diminishes.

The resultant solutions may find applications in other processes as well as cutting. Thus, by putting
A3 = 0 we obtain a solution to the problem of transient heat transfer between two bodies. Heat transfer in a

system of two bodies arises in finishing and strengthening processes, in problems relating to friction between
two bodies, and so forth.

NOTATION

w, A, thermal conductivity and thermal diffusivity; v, velocity of heat sources (cutting speed); Ij &), Ki &),
modified Bessel functions of the first and second kinds; b, width of cut; It, I}, lengths of contacts along the
front and back faces of the tool; I, length of deformationarea, l=lg+1;k, shrinkage coefficient of shaving; P =(x~
XO)2 + =y 25 o =v/2w.
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